Formation of Tetracyclic Oxazolidinones from Cycloadducts of Benzylidene Ketones with 4-Phenyl-4,5-dihydro-3H-1,2,4-triazole-3,5-dione (PTAD) by Base-promoted Backbone Participation and Rearrangement

Satoko Tanaka, *, ${ }^{\text {a }}$ Kazuyoshi Seguchi, ${ }^{*, a}$ Kuniaki Itoh ${ }^{\boldsymbol{b}}$ and Akira Sera ${ }^{\text {b }}$
${ }^{a}$ Faculty of Home Science, Mukogawa Women's University, Nishinomiya 663, Japan
${ }^{b}$ Department of Chemistry, Faculty of Science, Kobe University, Kobe 657, Japan

Alcoholysis and aminolysis of urazoles 4a-j prepared by the reactions of benzylidene ketones with 4-phenyl-4,5-dihydro-3H-1,2,4-triazole-3,5-dione (PTAD) afforded tricyclic oxazolidinone derivatives $\mathbf{5 a - o}$ in moderate yields (16-77\%). The structure of compound $\mathbf{5 b}$ was confirmed by a single-crystal X -ray analysis. The reaction proceeded via opening of the urazole ring by initial Michael addition of nucleophiles (solvents) to the enone substructure, followed by participation of the carbonyl group and final skeletal rearrangements.

The behaviour of 4-phenyl-4,5-dihydro-3H-1,2,4-triazole-3,5dione (PTAD) toward alkenes shows diverse reactivities such as $[4+2],{ }^{1}[2+2],{ }^{2}$ ene, ${ }^{2}$ and dipolar reactions ${ }^{3}$ to afford corresponding cycloadducts (tetrahydro-1,2,4-triazole3,5 -diones) (urazoles). However, utilization of urazoles in organic syntheses has been limited so far only to preparations of azoalkanes, ${ }^{4} \alpha$-diketones, ${ }^{5}$ and triazines. ${ }^{6}$ This restricted use of urazoles is attributed, in part, to difficulties encountered in opening of the urazole ring, which requires relatively drastic conditions to be cleaved (e.g., potassium hydroxide in refluxing alcohols). ${ }^{1.3 a}$

We have recently observed that benzylidene ketones 1 reacted with PTAD to afford 1:2 Diels-Alder products 2 and DielsAlder ene products 3 , and that compounds 3 were converted easily into 1,2 -dihydrocinnoline derivatives 4 in the presence of base by elimination of PTAD $\cdot \mathrm{H}_{2} \cdot{ }^{7}$ By inspecting the structure of the product 4. which possesses an enone substructure in the neighbourhood of a urazole ring, one can expect that the urazole ring should be cleaved rather readily by alcoholysis and successive neighbouring-group participation. In the present paper, we describe the opening of the urazole ring and an unusual rearrangement initiated by Michael addition of nucleophiles to the enone moiety.

Results and Discussion

Addition-Elimination Reaction of PTAD.-The reaction of PTAD with a series of benzylidene ketones 1 in dichloromethane, followed by treatment with triethanolamine, gave yellow 1,2-dihydrocinnoline-1,2-dicarboximides ($4 \mathbf{a}-\mathbf{j}$; called urazoles hereafter) through elimination of PTAD $\cdot \mathrm{H}_{2}$ from Diels-Alder ene adducts 3 (Scheme 1). ${ }^{7}$ Although basepromoted preparation of urazoles 4 using isolated adducts 3 gave fairly good yields, isolation and purification of adducts 3 (silica gel chromatography and recrystallization) were troublesome because of concurrent formation of 1:2 Diels-Alder adducts 2 and the thermal instability of adducts $\mathbf{3}$. Instead, an in situ reaction, in which a benzylidene ketone was allowed to react with two molar equivalents of PTAD, followed by basecatalysed elimination of a PTAD• H_{2} moiety, was found to be advantageous.

Michael Addition and Rearrangement.-Treatment of an ethanolic solution of a urazole $4 \mathbf{a}$ with powdered potassium hydroxide for 60 min at $25^{\circ} \mathrm{C}$ resulted in loss of the characteristic yellow colour of compound 4a. The solution was neutralized with dil. hydrochloric acid, and the resulting

Scheme 1
precipitates were collected and recrystallized from ethanol to give a tricyclic derivative $\mathbf{5 b}$ possessing a 4 -oxa- $2,6,8$-triazatricyclo[6.3.0.0 ${ }^{1.5}$] undec-9-ene-3,7-dione skeleton (called tricyclic oxazolidinone hereafter) in 77% yield. The structure of compound $\mathbf{5 b}$ was assigned on the basis of spectral properties and elemental analyses. The IR spectrum of compound $\mathbf{5 b}$ showed a characteristic amide band at $3320 \mathrm{~cm}^{-1}$. In the mass spectrum the parent ion appeared at $m / z 365$, indicating that one molecule of ethanol had been incorporated into urazole $4 \mathbf{4}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum a methine proton and an amide proton appeared at $\delta 5.35$ and 6.54 as singlets, while the olefinic proton of substrate 4 a had disappeared. The ${ }^{13} \mathrm{C}$ NMR

Fig. 1 ORTEP projection of the oxazolidinone 5 b, with crystallo graphic numbering scheme. The hydrogens and ethanol solvate were omitted for clarity.
spectrum showed two quaternary carbons and a methine carbon at $\delta_{\mathrm{C}} 86.1$ (C-1), 96.9 (C-5) and 79.7 (C-11). Elemental analyses also supported the proposed structure. Finally, X-ray crystallographic structure determination for an ethanol solvate of compound $\mathbf{5 b}$ was undertaken to confirm the configuration at C-5 and C-11. An ORTEP drawing (Fig. 1) revealed that the methyl group at C-5 and the ethoxy group at C-11 have endo and exo configurations with respect to the cis-fused imidazoli-dinone-pyrroline ring, respectively. Isomer $\mathbf{5 b}$ was the sole stereoisomer isolated, and attempts to detect other stereoisomers in the reaction mixture by using NMR spectroscopy were unsuccessful. The intriguing tricyclic framework of products 5 can be regarded as a heterohomologue of angular triquinane sesquiterpenes (tricyclo[6.3.0.0 ${ }^{1.5}$]undecanes; some of which display significant biological activities ${ }^{8}$).

Similar reaction of other urazoles also gave tricyclic oxazolidinones in moderate yields ($16-77 \%$). All alcohols tested except tert-butyl alcohol gave the expected products; tert-butyl alcohol did not react with urazole 4 a , and compound $5 \mathbf{d}$ was not formed. Butylamine in ethanol also gave a tricyclic oxazolidinone 5 e with incorporation of a butylamino group in 16% yield, together with the ether compound 5 b in 23% yield. The structures of the tricyclic oxazolidinones were determined by comparison of their spectral properties with those of compound $\mathbf{5 b}$. The NMR data provide important information about the configuration of substituents at $\mathrm{C}-11$. By inspecting stereochemical features of the fused imidazoli-dinone-pyrroline ring of compound $\mathbf{5 b}$, the proximity of $11-\mathrm{H}$ with a substituent on $\mathrm{C}-5$ is deduced. The observed high-field shifts ($0.38-1.25 \mathrm{ppm}$) of $11-\mathrm{H}$ of compounds $\mathbf{5 h}-\mathrm{m}$ clearly indicate that these compounds have the 11 -endo- H and the $5-e n d o-$ phenyl (or heteroaromatic) configurations. Similarly, observed low-field shifts ($0.55-0.64 \mathrm{ppm}$) of $11-\mathrm{H}$ indicate the same stereochemistry for compounds $\mathbf{5 n}$ and $\mathbf{5 0}$, in which the endo C-5 tert-butyl substituent makes the $11-\mathrm{H}$ resonate at lower field by a steric compression effect.

A reasonable mechanism for the stereospecific formation of tricyclic oxazolidinones is depicted in Scheme 2. An initial Michael addition of a solvent molecule (nucleophile) to the enone moiety of a urazole 4 from the sterically less hindered anti side to the urazole ring, and subsequent opening of the urazole ring by a resulting enolate (backbone participation), affords a 3 H -oxazolinone intermediate 6.* A second intermediate 7 is

[^0]
non-systematic numbering scheme (see text)

	R^{1}	X	Y
$\mathbf{a} ;$	Me	H	MeO
$\mathbf{b} ;$	Me	H	EtO
$\mathbf{c} ;$	Me	H	Pri
$\mathbf{d} ;$	Me	H	$\mathrm{Bu}^{t} \mathrm{O}$
$\mathbf{e} ;$	Me	H	BuNH
$\mathbf{f} ;$	Me	OMe	EtO
$\mathbf{g} ;$	Me	Cl	EtO
$\mathbf{h} ;$	Ph	H	EtO
$\mathbf{i} ;$	Ph	H	Pr
$\mathbf{j} ;$	Ph	OMe	
$\mathbf{k} ;$	2-furyl	H	EtO
$\mathbf{l} ;$	2-thienyl	H	EtO
$\mathbf{m} ;$	2-pyridyl	OMe	EtO
$\mathbf{n} ;$	Bu^{t}	H	EtO
$\mathbf{o} ;$	Bu^{t}	OMe	EtO

Scheme 2 Reagent: i, H^{+}
formed by nucleophilic attack of the amide nitrogen atom on the enamine carbon atom, accompanied by an $\mathrm{N}-\mathrm{N}$ cleavage. ${ }^{10.11}$ Final transannular Michael addition of the amide nitrogen atom to the aza enone substructure in intermediate 7 leads to the oxazolidinones 5a-o. A molecular model of an intermediate 7 reveals that the nucleophilic amide nitrogen atom is very close to the aza enone carbon atom.

To clarify whether the initial Michael addition of a solvent molecule is actually requisite to opening of the diazadicarboximide ring, a urazole 8 prepared by reduction of compound 4a was allowed to react under the same conditions. The reaction of compound 8 , which possesses no enone substructure, also afforded an oxazolidinone 9 , in 75% yield [eqn. (1)]. A

non-systematic numbering scheme (see text)
deuterium-exchange reaction of $\mathbf{8}$ was followed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the presence of deuterium oxide and tetrabutylammonium bromide in CDCl_{3} solution. Addition of a catalytic amount of potassium hydroxide to the solution caused immediate exchange of the methine proton before the formation of oxazolidinone 9. This finding suggests that enolization of
compound $\mathbf{8}$ occurred before the formation of compound 9 , and that the presence of an enolizable α-hydrogen atom adjacent to the diazadicarboximide ring is requisite for the present rearrangements.

Experimental

Instruments.- ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained in CDCl_{3} solutions (unless otherwise stated) on a Hitachi R-600 or a JEOL FX 200 spectrometer using tetramethylsilane as internal standard. J-Values are given in Hz. IR spectra were recorded on a Shimadzu R-460 spectrometer. Mass spectra were measured by a JEOL JMX DX-303 spectrometer. Elemental analyses were performed using a Yanagimoto Model MT-3 CHN analyser.

Materials.-Benzylidene ketones 1a-j were synthesized according to the reported procedures ${ }^{12}$ or obtained from commercial sources. PTAD was freshly prepared by Cookson's method. ${ }^{13}$ The substrates $4 \mathbf{a}-\mathbf{j}$ were prepared by the in situ addition-elimination reaction described in the previous report. ${ }^{7}$

3-(2-Furoyl)-N-phenyl-1,2-dihydrocinnoline-1,2-dicarboximide $4 f$ was obtained in 72% yield, m.p. $224-225^{\circ} \mathrm{C}$ (yellow powder from EtOH); $\delta_{\mathrm{H}} 6.23(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{dd}, J 4$ and 1$), 6.96-$ $7.67(10 \mathrm{H}, \mathrm{m})$ and $8.10-8.33(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 112.9(\mathrm{~d}), 115.1(\mathrm{~d})$, 115.3 (d), 120.0 (s), 125.8 (d), 128.1 (d), 128.6 (d), 129.2 (d), 130.7 (s), 131.0 (s), 131.3 (d), 134.8 (s), 143.2 (s), 145.8 (s), 147.6 (d), 151.4 (s) and $172.4(\mathrm{~s}) ; \nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1754,1703,1658$ and 1624; m/z $371\left(\mathrm{M}^{+}, 100 \%\right), 196$ (46), 168 (45) and 139 (9) (Found: C, 68.1; H, 3.3; $\mathrm{N}, 11.4 . \mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 67.90; H, 3.53; N, 11.32%).

N -Phenyl-3-(2-thenoyl)-1,2-dihydrocinnoline-1,2-dicarboximide 4 g was obtained in 80% yield, m.p. $217^{\circ} \mathrm{C}$ (yellow powder from EtOH$) ; \delta_{\mathrm{H}} 6.20(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$ and $6.97-8.30(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ 114.5 (d), 115.4 (d), 119.9 (s), 125.7 (d), 125.8 (d), 128.0 (d), 128.4 (d), 128.6 (d), 129.1 (d), 130.7 (s), 131.1 (s), 131.3 (d), 134.6 (s), 134.7 (d), 135.8 (d), 141.8 (s), 143.0 (s), 145.7 (s) and 177.1 (s); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1771,1718,1631$ and $1488 ; m / z 387\left(\mathrm{M}^{+}\right.$, 100%), 240 (11), 212 (61), 184 (15), 119 (5) and 111 (49) (Found: $\mathrm{C}, 64.9 ; \mathrm{H}, 3.3 ; \mathrm{N}, 10.7 . \mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ S requires $\mathrm{C}, 65.09 ; \mathrm{H}, 3.38$; $\mathrm{N}, 10.85 \%$)

7-Methoxy-N-phenyl-3-(pyridine-2-carbonyl)-1,2-dihydro-cinnoline-1,2-dicarboximide 4 h was obtained in 48% yield, m.p. $210-211^{\circ} \mathrm{C}$ (yellow powder from EtOH); $\delta_{\mathrm{H}} 3.86(3 \mathrm{H}, \mathrm{s})$, $6.46(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.13-7.50(10 \mathrm{H}, \mathrm{m}), 7.83-8.10(1 \mathrm{H}, \mathrm{m})$ and $8.50-8.70(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 55.7$ (q), 101.4 (d), 111.5 (d), 113.1 (s), 116.8 (d), 122.9 (d), 125.8 (d), 127.2 (d), 128.5 (d), 129.1 (d), 129.6 (d), 12.9 .8 (s), 130.7 (s), 136.2 (s), 137.3 (d), 143.5 (s), 145.9 (s), 148.7 (d), $153.5(\mathrm{~s}), 161.9(\mathrm{~s})$ and $185.6(\mathrm{~s}) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1762$, 1715, 1667, 1603 and $1505 ; m / z 412\left(\mathrm{M}^{+}, 100 \%\right), 265(63), 222$ (26), 206 (17) and 187 (7) (Found: C, 66.8; H, 3.8; N, 13.6. $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 66.97; $\mathrm{H}, 3.91 ; \mathrm{N}, 13.59 \%$).

N -Phenyl-3-pivaloyl-1,2-dihydrocinnoline-1,2-dicarboximide 4 i was obtained in 31% yield, m.p. $200-201^{\circ} \mathrm{C}$ (yellow powder from EtOH); $\delta_{\mathrm{H}} 1.37(9 \mathrm{H}, \mathrm{s})$, $5.73(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$ and $6.95-7.90$ ($9 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 26.8$ (q), 45.2 (s$), 106.7$ (d), 115.3 (d), 120.1 (d), 125.8 (s), 125.9 (d), 127.0 (d), 128.7 (d), 129.3 (d), 130.1 (d), 130.5 (s), 131.7 (s), 133.4 (s), 143.0 (s), 144.9 (s) and 202.5 (s); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765,1718,1408$ and $1356 ; m / z 361\left(\mathrm{M}^{+}, 100 \%\right)$, 157 (21) and 130 (20) (Found: M^{+}, 361.1429. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{M}, 361.1430$).
7-Methoxy-N-phenyl-3-pivaloyl-1,2-dihydrocinnoline-1,2dicarboximide 4 j was obtained in 78% yield, m.p. $212-214{ }^{\circ} \mathrm{C}$ (yellow powder from EtOH); $\delta_{\mathrm{H}} 1.37(9 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 5.78$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.62-7.13(2 \mathrm{H}, \mathrm{m})$ and $7.40-7.60(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 26.9$ (q), 45.2 (s), 55.7 (q), 101.6 (d), 107.9 (d), 111.5 (d), 112.5 (s), 125.9 (d), 128.3 (d), 128.7 (d), 129.1 (s), 129.3 (d), 130.6 (s), 134.7
(s), $142.9(\mathrm{~s}), 145.3(\mathrm{~s}), 161.2(\mathrm{~s})$ and $202.3(\mathrm{~s}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1767, 1723, 1608, 1408, 1280 and 1137; m/z $391\left(\mathrm{M}^{+}, 100 \%\right), 334$ (17), 187 (56) and 160 (28) (Found: $\mathrm{M}^{+}, 391.1552 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires M, 391.1530).

General Procedure of Preparation of Tetracyclic Oxazolidinones $5 \mathbf{5 a - 0}$.-To a suspension of a compound $4(0.50 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added powdered potassium hydroxide (3.6 mmol), and the mixture was stirred for 60 min at $25^{\circ} \mathrm{C}$, during which time the characteristic yellow colour disappeared. The solution was neutralized by dil. hydrochloric acid to give a precipitate, which was collected by filtration and recrystallized from ethanol. NMR locants follow the non-systematic numbering scheme shown in the displayed formulae in Scheme 2.
($2 \mathrm{R}^{*}, 12 \mathrm{R}^{*}$)-2-Methoxy-12-methyl-11-phenyl-13-oxa-9,11,15triazatetracyclo[7.6.0.0 $\left.{ }^{1.12} .0^{3.8}\right]$ pentadeca-3,5,7-triene-10,14dione 5 a was obtained from urazole $\mathbf{4 a}$ in 76% yield, m.p. 235$236{ }^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}} 1.72(3 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}, \mathrm{s}), 5.26$ $(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.30-7.52(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 21.0$ (q), 59.9 (q), 81.4 (d, C-11), 86.1 ($\mathrm{s}, \mathrm{C}-1$), 96.9 (s, C-5), 116.3 (d), 125.2 (d), 125.4 (d), 127.8 (d), 128.2 (d), 129.2 (d), 129.6 (s), 130.8 (d), 133.9 (s), 139.3 (s), 154.1 (s) and 154.7 (s); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3250,1782,1711,1593$ and $979 ; m / z 351\left(\mathrm{M}^{+}\right.$, 100%), 308 (25), 307 (22), 276 (41), 275 (25), 232 (17), 200 (22), 190 (16), 189 (42), 147 (23) and 119 (13) (Found: C, 64.9; H, 4.8; $\mathrm{N}, 11.9 . \mathrm{C}_{19} \mathrm{H}_{1} 7 \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.93 ; \mathrm{H}, 4.88 ; \mathrm{N}, 11.97 \%$).
$\left(2 \mathrm{R}^{*}, 12 \mathrm{R}^{*}\right)$-2-Ethoxy-12-methyl-11-phenyl-13-oxa-9,11,15triazatetracyclo $\left[7.6 \cdot 0.0^{1.12} .0^{3.8}\right]$ pentadeca-3,5,7-triene-10,14dione $\mathbf{5 b}$ was obtained from urazole $\mathbf{4 a}$ in 77% yield, m.p. 109$110^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}} 1.41(3 \mathrm{H}, \mathrm{t}), 1.72(3 \mathrm{H}, \mathrm{s}), 3.80$ $(2 \mathrm{H}, \mathrm{q}), 5.35(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.54(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.08-7.54(9$ $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.4(\mathrm{q}), 21.0(\mathrm{q}), 68.1(\mathrm{t}), 79.7(\mathrm{~d}, \mathrm{C}-11), 86.1(\mathrm{~s}, \mathrm{C}-1)$, 96.9 (s, C-5), 116.3 (d), 125.2 (d), 125.3 (d), 127.7 (d), 128.2 (d), 129.2 (d), 129.9 (s), 130.7 (d), 133.9 (s), 139.3 (s), 154.0 (s) and 154.5 (s); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320,1763,1712,1610,1476,1376$, 1124, 1104, $968,764,736$ and $680 ; m / z 365\left(\mathrm{M}^{+}, 100 \%\right), 322$ (17), 321 (30), 292 (22), 276 (36), 275 (32), 246 (13), 203 (22), 200 (24) and 158 (14) (Found: C, 65.9; H, 5.2; N, 11.6. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.72 ; \mathrm{H}, 5.24 ; \mathrm{N}, 11.51 \%$).
($2 \mathrm{R}^{*}, 12 \mathrm{R}^{*}$)-2-Isopropoxy-12-methyl-11-phenyl-13-oxa-9,11,-15-triazatetracyclo $\left[7.6 .0 .0^{1.12} \cdot 0^{3.8}\right]$ pentadeca-3,5,7-triene-10,14 -dione 5 c was obtained from urazole 4 a in 23% yield, m.p. ${ }^{201-203}{ }^{\circ} \mathrm{C}$ (needles from EtOH); $\delta_{\mathrm{H}} 1.35(3 \mathrm{H}, \mathrm{d}, J 6.0), 1.50$ ($3 \mathrm{H}, \mathrm{d}, J 6.0$), $1.69(3 \mathrm{H}, \mathrm{s}), 3.75$ ($1 \mathrm{H}, \mathrm{m}$), $5.44(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.29$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.27-7.58(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 21.1(\mathrm{q}), 21.8(\mathrm{q}), 22.9$ (q), 73.3 (d), 77.1 (d, C-11), 86.1 ($\mathrm{s}, \mathrm{C}-1$), 97.1 ($\mathrm{s}, \mathrm{C}-5$), 116.2 (d), 125.1 (d), 125.2 (d), 127.7 (d), 128.2 (d), 129.2 (d), 130.2 (s), 130.6 (d), 133.9 (s), 139.5 (s), $154.0(\mathrm{~s})$ and $154.4(\mathrm{~s}) ; v_{\text {max }}(\mathrm{KBr})$ $3280,1756,1716,1376,1096,764$ and $720 ; m / z 379\left(\mathrm{M}^{+}, 100 \%\right)$, 335 (36), 292 (13), 275 (80), 217 (11), 158 (29) and 132 (75) (Found: $\mathrm{M}^{+}, 379.1530 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{M}, 379.1530$).
($2 \mathrm{R}^{*}, 12 \mathrm{R}^{*}$)-2-Butylamino-12-methyl-11-phenyl-13-oxa-9,11,15-triazatetracyclo $\left[7.6 \cdot 0.0^{1.12} .0^{3.8}\right]$ pentadeca-3,5,7-triene10,14 -dione 5 e . A solution of urazole $4 \mathrm{a}(500 \mathrm{mg}, 1.57 \mathrm{mmol})$ and butylamine ($100 \mathrm{mg}, 1.37 \mathrm{mmol}$) in ethanol ($30 \mathrm{~cm}^{3}$) was refluxed for 60 min . The reaction mixture was then quenched with dil. hydrochloric acid. The resulting precipitates were filtered (water-pump) and chromatographed on silica gel (dichloromethane). Compound $\mathbf{5 b}$ ($131 \mathrm{mg}, 23 \%$), from the first eluent, and the title compound $5 \mathrm{e}(98 \mathrm{mg}, 16 \%)$, from the second eluent, were obtained; m.p. ${ }^{205-206}{ }^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.76-1.13(7 \mathrm{H}, \mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.47-1.70(2 \mathrm{H}$, $\mathrm{m}), 5.35(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.87-7.06(1 \mathrm{H}, \mathrm{m}), 7.26-7.53(8 \mathrm{H}, \mathrm{m})$ and $8.16(1 \mathrm{H}, \mathrm{s}) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3175,1710,1680,1124,1090$, 905 and $747 ; m / z 392\left(\mathrm{M}^{+}, 27 \%\right), 349$ (57), 230 (85), 132 (39) and 131 (100) (Found: M^{+}, 392.1850. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires M, 392.1850).
(2R*,12R*)-2-Ethoxy-6-methoxy-12-methyl-11-phenyl-13-oxa-9,11,15-triazatetracyclo[7.6.0.0 ${ }^{1.12} .0^{3.8}$]pentadeca-3,5,7-triene-10,14-dione 5 f was obtained from urazole 4 b in 50% yield, m.p. $234-235^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}} 1.35(3 \mathrm{H}, \mathrm{t}), 1.70(3$ $\mathrm{H}, \mathrm{s}), 3.75(2 \mathrm{H}, \mathrm{q}), 3.80(3 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.17(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 6.95(1 \mathrm{H}, \mathrm{dd}, J 4$ and 1$)$ and $7.30-7.47(7 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.4$ (q), 21.0 (q), 55.7 (q), 67.9 (t), 79.4 (d, C-11), 86.6 (s, C-1), 97.0 (s, C-5), 101.6 (d), 111.8 (d), 121.3 (s), 126.0 (d), 127.8 (d), 128.2 (d), $129.2(\mathrm{~d}), 133.9(\mathrm{~s}), 140.8(\mathrm{~s}), 154.0(\mathrm{~s}), 154.7(\mathrm{~s})$ and 162.0 (s); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3375,1768,1731,1597,1113,1073$ and 738; $m / z 395\left(\mathrm{M}^{+}, 100 \%\right), 352(19), 351$ (67), 323 (11), 322 (46), 307 (30), 306 (100), 305 (84), 304 (46), 278 (15), 190 (18), 188 (23), 164 (34) and 118 (26) (Found: C, 63.6; H, 5.35; N, 10.7. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $63.77 ; \mathrm{H}, 5.36 ; \mathrm{N}, 10.63 \%$).
(2R*,12R*)-6-Chloro-2-ethoxy-12-methyl-11-phenyl-13-oxa-9,11,15-triazatetracyclo[7.6.0.0 ${ }^{1.12} .0^{3.8}$]pentadeca-3,5,7-triene10,14 -dione 5 g was obtained from urazole 4 c in 64% yield, m.p. $250-251^{\circ} \mathrm{C}$ (needles from EtOH); $\delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{t}), 1.54(3 \mathrm{H}, \mathrm{s})$, $3.83(2 \mathrm{H}, \mathrm{q}), 5.33(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.32-7.60$ ($8 \mathrm{H}, \mathrm{m}$) $; \delta_{\mathrm{C}} 15.4(\mathrm{q}), 21.0(\mathrm{q}), 68.3(\mathrm{t}), 79.3(\mathrm{~d}, \mathrm{C}-11), 86.4(\mathrm{~s}, \mathrm{C}-1)$, 96.9 (s, C-5), 116.6 (d), 125.3 (d), 126.3 (d), 127.8 (d), 128.4 (d), 129.3 (d), 133.7 (s), 136.5 (s), 140.3 (s), 153.7 (s) and 154.6 (s); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3315,1784,1728,1599,1137,1110$ and $964 ; m / z$ $401\left(\mathrm{M}^{+}+2,18 \%\right), 399\left(\mathrm{M}^{+}, 49\right), 357(18), 355(52), 328(36)$, 326 (100), 312 (13), 310 (49), 309 (47), 308 (42), 280 (9), 237 (11), 192 (14) and 118 (33) (Found: C, 60.0; H, 4.5; N, 10.4. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires C, $60.06 ; \mathrm{H}, 4.54 ; \mathrm{N}, 10.52 \%$).
(2R*,12R*)-2-Ethoxy-11,12-diphenyl-13-oxa-9,11,15-triazatetracyclo $\left[7.6 .0 .0^{1.12} .0^{3.8}\right.$]pentadeca-3,5,7-triene-10,14-dione $\mathbf{5 h}$ was obtained from urazole $\mathbf{4 d}$ in 65% yield, m.p. $240-242{ }^{\circ} \mathrm{C}$ (needles from EtOH); $\delta_{\mathrm{H}} 1.05(3 \mathrm{H}, \mathrm{t}), 3.00(2 \mathrm{H}, \mathrm{q}), 4.68(1 \mathrm{H}, \mathrm{s}$, $11-\mathrm{H}), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.10-7.68(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 14.5(\mathrm{q}), 67.0$ (t), 79.5 (d, C-11), 87.1 (s, C-1), 98.8 (s, C-5), 115.8 (d), 124.7 (d), 124.8 (d), 124.9 (d), 126.2 (d), 126.3 (d), 128.2 (d), 128.8 (s), 129.5 (d), 129.8 (d), 130.1 (d), 132.9 (s), 134.6 (s), 138.8 (s), 154.1 (s) and 154.4 (s); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3348,1795,1738,1472,1354,1144$, 773 and $754 ; m / z 427\left(\mathrm{M}^{+}, 100 \%\right), 383$ (3), 338 (7), 337 (8), 322 (12), 308 (32), 276 (17), 262 (34), 203 (31) and 180 (9) (Found: C, $70.2 ; \mathrm{H}, 4.9 ; \mathrm{N}, 9.9 . \mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.25 ; \mathrm{H}, 4.95 ; \mathrm{N}$, 9.84%).
(2R*,12R*)-2-Isopropoxy-11,12-diphenyl-13-oxa-9,11,15-triazatetracyclo[7.6.0.0 $\left.{ }^{1.12} .0^{3.8}\right]$ pentadeca-3,5,7-triene-10,14-di-
one 5 i was obtained from urazole 4 d in 60% yield, m.p. 231$232{ }^{\circ} \mathrm{C}$ (needles from EtOH); $\delta_{\mathrm{H}} 0.79(3 \mathrm{H}, \mathrm{d}, J 6), 1.05(3 \mathrm{H}, \mathrm{d}, J$ $6), 2.82(1 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.02-$ $7.70(14 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 20.8(\mathrm{q}), 22.6(\mathrm{q}), 72.6(\mathrm{~d}), 77.4(\mathrm{~d}, \mathrm{C}-11), 87.7$ (s, C-1), 99.3 (s, C-5), 116.2 (d), 125.1 (d), 125.2 (d), 125.4 (d), 126.7 (d), 128.3 (d), 128.7 (s), 129.4 (d), 129.8 (d), 130.2 (d), 130.4 (d), 133.4 (s), 134.9 (s), 139.2 (s), 154.5 (s) and 154.8 (s): $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320,1778,1721,1144,1100,764$ and $746 ; \mathrm{m} / \mathrm{z}$ $441\left(\mathrm{M}^{+}, 66 \%\right), 397$ (23), 294 (6), 280 (11), 262 (37), 217 (11), 180 (17), 132 (40) and 105 (100) (Found: C, 70.7; H, 5.2; N. 9.5. $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.71 ; \mathrm{H}, 5.25 ; \mathrm{N}, 9.52 \%$).
($2 \mathrm{R}^{*}, 12 \mathrm{R}^{*}$)-2-Ethoxy-6-methoxy-11,12-diphenyl-13-oxa-9,11,15-triazatetracyclo $\left[7.6 \cdot 0.0^{1.12} \cdot 0^{3.8}\right]$ pentadeca-3,5,7-triene-10,14-dione 5 j was obtained from urazole 4 e in 58% yield, m.p. $255-256^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}} 1.03(3 \mathrm{H}, \mathrm{t}), 3.10(2 \mathrm{H}, \mathrm{q})$, $3.83(3 \mathrm{H}, \mathrm{s}), 4.38(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.42(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.65(1 \mathrm{H}, \mathrm{dd}, J$ 8 and 4$)$ and $6.83-7.83(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.0(\mathrm{q}), 55.7(\mathrm{q}), 67.3(\mathrm{t})$, 79.7 (d, C-11), 88.1 (s, C-1), 99.5 (s, C-5), 101.6 (d), 111.9 (d), 121.4 (s), 125.5 (d), 125.9 (d), 126.8 (d), 128.8 (d), 129.4 (d), 130.3 (d), 133.5 (d), 135.1 (s), 140.9 (s), $154.6(\mathrm{~s}), 154.8(\mathrm{~s})$ and $162.1(\mathrm{~s}) ;$ $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3260,1791,1720,1495,1231$ and $1028 ; m / z 457$ $\left(\mathrm{M}^{+}, 100 \%\right), 368(39), 338(16), 292(15), 233(12)$ and $162(15)$ (Found: $\mathrm{M}^{+}, 457.1636 . \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{M}, 457.1640$).
(2R*,12R*)-2-Ethoxy-12-(2-furyl)-11-phenyl-13-oxa-9,11,15triazatetracyclo[7.6.0.0 ${ }^{1.12} .0^{3.8}$]pentadeca-3,5,7-triene-10,14dione $5 k$ was obtained from urazole $4 f$ in 61% yield, m.p. 243-
$244{ }^{\circ} \mathrm{C}$ (needles from EtOH$) ; \delta_{\mathrm{H}} 1.17(3 \mathrm{H}, \mathrm{t}), 3.33(2 \mathrm{H}, \mathrm{q}), 4.97$ $(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.35(1 \mathrm{H}, \mathrm{dd}, J 4$ and 2$), 6.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.60$ $\left(1 \mathrm{H}, \mathrm{dd}, J 4\right.$ and 1) and $7.20-7.53(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.1(\mathrm{q}), 67.5(\mathrm{t})$, 79.8 (d, C-11), 87.6 ($\mathrm{s}, \mathrm{C}-1$), 95.7 (s, C-5), 111.5 (d), 113.1 (d), 116.5 (d), 125.2 (d), 125.4 (d), 126.6 (d), 127.7 (d), 128.9 (d), $130.1(\mathrm{~s}), 130.6(\mathrm{~d}), 134.5(\mathrm{~s}), 139.4(\mathrm{~s}), 144.7(\mathrm{~d})$ and $154.3(\mathrm{~s})$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3250,1788,1700,1166,1107$ and $777 ; m / z 417$ $\left(\mathrm{M}^{+}, 100 \%\right.$), 373 (12), 328 (15), 322 (41), 298 (56), 276 (53), 252 (37), 211 (20), 203 (43), 160 (18) and 132 (59) (Found: \mathbf{M}^{+}, 417.1340. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{M}, 417.1320$).
(2R*,12R*)-2-Ethoxy-11-phenyl-12-(2-thienyl)-13-oxa-9,11,-15-triazatetracyclo[7.6.0.0 $0^{1.12} .0^{3.8}$]pentadeca-3,5,7-triene-10,-14-dione 51 was obtained from urazole 4 g in 50% yield, m.p. $255-256^{\circ} \mathrm{C}$ (needles from EtOH); $\delta_{\mathrm{H}} 1.10(3 \mathrm{H}, \mathrm{t}), 3.27(2 \mathrm{H}, \mathrm{q})$, $4.87(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $6.90-7.73(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ 15.2 (q), 67.8 (t), 80.2 (d, C-11), 87.8 (s, C-1), 98.1 (s, C-5), 116.4 (d), 125.3 (d), 125.4 (d), 126.1 (d), 127.2 (d), 128.2 (d), 128.4 (d), 128.7 (d), 128.8 (d), 130.1 (s), 130.6 (d), 134.8 (s), 136.8 (s), 139.4 $(\mathrm{s}), 154.0(\mathrm{~s})$ and $154.2(\mathrm{~s}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3305,1785,1727$, 1494,1151 and $755 ; m / z 433\left(\mathrm{M}^{+}, 47 \%\right.$), 343 (15), 322 (31), 314 (25), 276 (38), 227 (13), $203(41), 132(55)$ and 111 (100) (Found: M^{+}433.1103. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{M}, 433.1100$).
($2 \mathrm{R}^{*}, 12 \mathrm{R}^{*}$)-2-Ethoxy-6-methoxy-11-phenyl-12-(2-pyridyl)-13-oxa-9,11,15-triazatetracyclo[7.6.0.0 ${ }^{1.12} .0^{3.8}$]pentadeca-3,5,7 -triene-10,14-dione 5 m was obtained from urazole 4 h in 47% yield, m.p. $260^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}} 1.13(3 \mathrm{H}, \mathrm{t}), 3.30(2$ $\mathrm{H}, \mathrm{q}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.10(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{dd}, J 8$ and 3$)$, $6.87(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.00-7.33(8 \mathrm{H}, \mathrm{m}), 7.53-7.86(2 \mathrm{H}, \mathrm{m})$ and $8.53(1 \mathrm{H}, \mathrm{d}, J 5): \delta_{\mathrm{C}} 15.1(\mathrm{q}), 55.6(\mathrm{q}), 67.3(\mathrm{t}), 81.2(\mathrm{~d}, \mathrm{C}-11)$, 81.7 (s, C-1), 92.2 (s, C-5), 100.6 (d), 110.5 (d), 121.5 (d), 123.1 (s), 123.3 (s), 125.4 (d), 125.5 (d), 125.8 (d), 128.2 (d), 136.5 (s), $136.7(\mathrm{~d}), 141.6(\mathrm{~s}), 149.6(\mathrm{~d}), 154.8(\mathrm{~s}), 158.6(\mathrm{~s})$ and $161.6(\mathrm{~s}) ;$ $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280,1706,1616,1586,1493$ and $1464 ; m / z 458$ $\left(\mathrm{M}^{+}, 3 \%\right), 415$ (86), 326 (42) and 296 (100) (Found: \mathbf{M}^{+}, 458.1597. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $\mathrm{M}, 458.1590$).
($2 \mathrm{R}^{*}, 12 \mathrm{R}^{*}$)-12-(tert-Butyl)-2-ethoxy-11-phenyl-13-oxa-9,11,-15-triazatetracyclo $\left[7.6 .0 .0^{1.12} .0^{3.8}\right.$]pentadeca-3,5,7-triene-10,-14-dione 5 n was obtained from urazole 4 i in 29% yield, m.p. $256{ }^{\circ} \mathrm{C}$ (powder from EtOH$) ; \delta_{\mathrm{H}} 1.03(9 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{t}), 4.02$ $(2 \mathrm{H}, \mathrm{q}), 5.90(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.30-7.60(9$ $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.6(\mathrm{q}), 26.2$ (q), 39.2 (s), 67.9 (t), 79.1 (d, C-11), 87.3 (s, C-1), 104.0 (s, C-5), 115.1 (d), 124.4 (d), 125.2 (d), 128.0 (d), 128.8 (d), 128.9 (d), 129.8 (s), 130.7 (d), 136.9 (s), 139.3 (s), 153.8 (s) and $155.0(\mathrm{~s}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3260,1776,1723,1437,1408$, 1167 and $750 ; m / z 407\left(\mathrm{M}^{+}, 47 \%\right), 276$ (27), 242 (100), 203 (33) and 132 (35) (Found: $\mathrm{M}^{+}, 407.1851 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires M , 407.1840).
(2R*,12R*)-12-(tert-Butyl)-2-ethoxy-6-methoxy-11-phenyl-13-oxa-9,11,15-triazatetracyclo[7.6.0.0 ${ }^{1.12} .0^{3.8}$]pentadeca-3,5,7 -triene-10,14-dione 50 was obtained from urazole 4 j in 45% yield, m.p. $178-179{ }^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}} 1.00(9 \mathrm{H}$, s), $1.33(3 \mathrm{H}, \mathrm{t}), 4.05(3 \mathrm{H}, \mathrm{s}), 4.15(2 \mathrm{H}, \mathrm{q}), 5.81(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 6.48$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.07-7.93(7 \mathrm{H}, \mathrm{m})$ and $8.30-8.47(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.6$ (q), 27.6 (q), $39.2(\mathrm{~s}), 56.0(\mathrm{q}), 67.5$ (t), 78.8 (d, C-11), $88.0(\mathrm{~s}$, C-1), 100.2 (d), 104.1 (s, C-5), 105.9 (d), 111.3 (d), 123.9 (d), 125.9 (d), 128.1 (s), 128.8 (d), 128.9 (d), 129.3 (d), 136.9 (s), 141.0 (s), $150.9(\mathrm{~s}), 152.5(\mathrm{~s}), 154.9(\mathrm{~s})$ and $162.7(\mathrm{~s}) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300$, $1780,1719,1669$ and $909 ; m / z 437\left(\mathrm{M}^{+}, 100 \%\right) 393$ (40), 378 (29), 348 (30), 332 (45) and 272 (63) (Found: $\mathbf{M}^{+}, 437.1953$. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{M}, 437.1950$).

Synthesis of the Oxazolidinone 9.-Commercially available palladium on carbon (100 mg) and an ethanolic solution of compound $4 \mathbf{a}(300 \mathrm{mg}, 0.94 \mathrm{mmol})$ were placed in a reaction flask connected with an atmospheric pressure hydrogenation apparatus. Hydrogenation was carried out for $c a .12 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$ until uptake of hydrogen had ceased. After filtration and the removal of ethanol on a rotary evaporator, the resulting solid
was recrystallized from ethanol to afford urazole $\mathbf{8}$ in 83% yield.
Oxazolidinone 9 was prepared from urazole $\mathbf{8}$ in 75% yield according to the procedure given for the preparation of compound 5b.

3-Acetyl-N-phenyl-1,2,3,4-tetrahydrocinnoline-1,2-dicarboximide 8 had m.p. $124-125^{\circ} \mathrm{C}$ (powder from EtOH); $\delta_{\mathrm{H}} 2.24$ $(3 \mathrm{H}, \mathrm{s}), 3.46\left(2 \mathrm{H}, \mathrm{d}, J 4,4-\mathrm{H}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{t}, J 4,3-\mathrm{H})$ and $7.10-$ $7.70(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 26.1$ (q), 28.3 (t, C-4), 59.2 (d, C-3), 116.4 (d), 117.8 (s), 124.2 (d), 126.1 (d), 128.4 (d), 128.7 (d), 128.9 (d), 129.2 (s), 131.1 (d), 132.4 (s), 146.6 (s), 150.8 (s) and 201.6 (s); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1756,1700,1160,756$ and $748 ; \mathrm{m} / \mathrm{z} 321\left(\mathrm{M}^{+} 49 \%\right)$, 278 (100), 159 (45) and 132 (95) (Found: C, 67.2; H, 4.6; N, 13.1. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 67.26; $\mathrm{H}, 4.71 ; \mathrm{N}, 13.09 \%$).
(12R*)-12-Methyl-11-phenyl-13-oxa-9,11,15-triazatetracyclo [7.6.0.0 ${ }^{1.12} .0^{3.8}$ pentadeca-3,5,7-triene-10,14-dione 9 had m.p. $207^{\circ} \mathrm{C}$ (needles from EtOH); $\delta_{\mathrm{H}} 1.67(3 \mathrm{H}, \mathrm{s}), 3.13(1 \mathrm{H}, \mathrm{d}, J 16$, endo-11-H), $3.96(1 \mathrm{H}, \mathrm{d}, J, 16$, exo-11-H), $6.33(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.30-7.63(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 20.7(\mathrm{q}), 37.6(\mathrm{t}, \mathrm{C}-11), 84.7(\mathrm{~s}, \mathrm{C}-1), 97.2$ (s, C-5), 116.9 (d), 124.8 (d), 125.3 (d), 127.7 (d), 128.2 (d), 128.9 (d), 129.2 (d), 134.1 (s), 140.7 (s), 154.7 (s) and 154.9 (s); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3270,1763,1716,1473,1164,1145,1090,975$ and 751; $m / z 321\left(\mathrm{M}^{+}, 100 \%\right)$, 278 (21), 277 (29), 260 (29), 259 (24), 159 (99), 144 (24) and 119 (25) (Found: C, 67.2; H, 4.6; N, 13.1. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.26 ; \mathrm{H}, 4.71 ; \mathrm{N}, 13.09 \%$).

X-Ray Single-crystal Analysis of Compound 5b Ethanol Solvate.-A single crystal was mounted on a computercontrolled Rigaku AFC-5 diffractometer. Intensity data in the range $2<2 \theta<130$ were measured using graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.5148 \AA$); the $\omega-2 \theta$ scanning mode was used for data collection.

Crystal data. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}, \mathrm{M}=411.46$. Monoclinic, $a=$ 12.294(13), $b=13.201(7), c=13.107(5) \AA$ and $\beta=97.36(7)^{\circ}$, $V=2109.6(27) \AA^{3}$, space group $P 2_{1} / c, Z=4, D_{\mathrm{x}}=1.295 \mathrm{~g}$ cm^{-3}. The structure was solved by the direct methods using the MULTAN78 program. ${ }^{14}$ Non-hydrogen atoms were refined by the block-diagonal least-squares method with anisotropic temperature factors. The positional parameters of the hydrogen atoms were all located on a difference Fourier map and were refined with an overall isotropic temperature factor. The labelling of the atoms is given in Fig. 1.*

Acknowledgements

We thank Professor Toshimasa Ishida (Osaka University of

Pharmaceutical Sciences) for performing the X-ray analysis of compound $\mathbf{5 b}$. We are also indebted to thank Mrs. Shizuyo Takeyama and Miss Kiyoko Suwa (Faculty of Pharmacy, Mukogawa Women's University) for measuring ${ }^{13} \mathrm{C}$ NMR and mass spectra, and elemental analyses. The present work was supported by a Grant-in-Aid for Scientific Research (No. 05640621) from the Ministry of Education, Science and Culture of Japan.

References

1 (a) M. E. Burrage, R. C. Cookson, S. S. Gupte and I. D. R. Stevens, J. Chem. Soc., Perkin Trans. 2, 1975, 1325; (b) R. C. Cookson, S. S. H. Gilani and I. D. R. Stevens, J. Chem. Soc. C, 1967, 1905; (c) W. Adam, V. Lucchini, E.-M. Peters, K. Peters, L. Pasquato, H. G. Schnering, K. Seguchi, H. Walter and B. Will, Chem. Ber., 1989, 122, 133.
2 C.-C. Cheng, C. A. Seymour, M. A. Petti and F. D. Greene, J. Org. Chem., 1984, 49, 2910.
3 (a) W. Adam, O. De Lucchi and I. Erden, J. Am. Chem. Soc., 1980, 102, 4806; (b) W. Adam, O. De Lucchi and K. Hill, Chem. Ber., 1982, 115, 1982; (c) W. Adam, V. Lucchini, L. Pasquato, E.-M. Peters, K. Peters, H. G. Schnering and K. Seguchi, Chem. Ber., 1986, 119, 2932.

4 W. Adam and O. De Lucchi, Angew. Chem., Int. Ed. Engl., 1980, 19, 762.

5 R. M. Wilson and A. C. Hengge, J. Org. Chem., 1990, 55, 197; R. M. Wilson, A. C. Hengge, A. Ataei and N. Chantarasiri, J. Org. Chem., 1990, 55, 193.
6 W. Adam, S. Grabowski, R. F. Hinz, V. Lucchini, E.-M. Peters, K. Peters, H. Rebollo and H. G. Schnering, Chem. Ber., 1987, 120, 2075.

7 K. Seguchi and S. Tanaka, Bull. Chem. Soc. Jpn., 1991, 64, 3188.
8 L. A. Paquette, Top. Curr. Chem., 1984, $119,1$.
9 K. Seguchi and S. Tanaka, J. Chem. Soc., Perkin Trans. 1, 1991, 2883.
10 T. Francis and M. P. Thorn, Can. J. Chem., 1976, 54, 24.
11 N. Shachat and J. J. Bagmell, Jr., J. Org. Chem., 1963, 24, 991.
12 N. L. Drake and P. Allen, Jr., Org. Synth., 1967, Coll. Vol. 1, 77; E. P. Kohler and H. M. Chadwell, Org. Synth., 1967, Coll. Vol. 1, 78; G. A. Hill and G. M. Bramann, Org. Synth., 1967, Coll. Vol. 1, 81; A. T. Nielsen and W. J. Houlihan, Org. React., 1968, 16, 30.

13 R. C. Cookson, S. S. Gupte, I. D. R. Stevens and C. T. Watts, Org. Synth., 1988, Coll. Vol. 5, 936.
14 P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declerq and M. M. Woolfson, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, MULTAN 78, University of York, UK, 1978.

[^1]Paper 4/00878B
Received 14th February 1994
Accepted 15th April 1994

[^0]: * The structure of the rearranged product, previously given in ref. 9 as 6 , is now shown to be incorrect. We hope herein to revise the structure.

[^1]: * Supplementary publication. Tables of atomic coordinates, bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (see Instructions for Authors, January issue).

